summaryrefslogtreecommitdiff
path: root/tests/test5/compute.c
blob: f6f08c4e81f132d725bb32c2cbb378995341448d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
#include "compute.h"

#include <stdlib.h>
#include <math.h>

#define MaxFastBits 16

int **gFFTBitTable = NULL;

gfloat compute_level(const float *data, size_t nsamples, size_t nchan) {

	size_t i; 
	float level=0;
	float *input = malloc(nsamples*sizeof(float));
	float *output = malloc(nsamples*sizeof(float));

	double rate=44100; //TODO dynamique
/* Just return the max peak
	for (i=0;i<nsamples;i+=nchan) {
		val=((float *)data)[i];
		//printf("val==%i\n", val);
		if (val<0) val=-val;
		if (level<val) level=val;
	}
*/
	for (i=0;i<nsamples;i++) {
		input[i]=data[i*nchan];
	}

	compute_spectrom(input, nsamples, rate, output);

	for (i=0;i<nsamples;i++) {
		level+=output[i];
	}

	return level/nsamples;
}

// From Audacity
void compute_spectrom(float * data, int width, double rate, float *output) {

	int i;
	float processed[256]={ 0.0f };
	float in[256];
	float out[256];

	int start = 0;
	int windows = 0;
	while (start + 256 <= width) {
		for (i=0; i<256; i++)
			in[i] = data[start + i];

		// Hanning
		for (i=0; i<256; i++)
			in[i] *= 0.50 - 0.50 * cos(2 * M_PI * i / (256 - 1));
		break;

		PowerSpectrum(in, out);

		// Take real part of result
		for (i=0; i<256/2; i++)
			processed[i] += out[i];

		start += 256/2;
		windows++;
	}
	// Convert to decibels
	// But do it safely; -Inf is nobody's friend
	for (i = 0; i < 256/2; i++){
		float temp=(processed[i] / 256 / windows);
		if (temp > 0.0)
			processed[i] = 10*log10(temp);
		else
			processed[i] = 0;
	}
	for(i=0;i<256/2;i++)
		output[i] = processed[i];
}

/*
 * PowerSpectrum
 *
 * This function computes the same as RealFFT, above, but
 * adds the squares of the real and imaginary part of each
 * coefficient, extracting the power and throwing away the
 * phase.
 *
 * For speed, it does not call RealFFT, but duplicates some
 * of its code.
 */

void PowerSpectrum(float *In, float *Out)
{
	int i;

	float theta = M_PI / 128;

	float tmpReal[128];
	float tmpImag[128];
	float RealOut[128];
	float ImagOut[128];

	for (i = 0; i < 128; i++) {
		tmpReal[i] = In[2 * i];
		tmpImag[i] = In[2 * i + 1];
	}

	FFT(128, 0, tmpReal, tmpImag, RealOut, ImagOut);

	float wtemp = sin(0.5 * theta);

	float wpr = -2.0 * wtemp * wtemp;
	float wpi = -1.0 * sin(theta);
	float wr = 1.0 + wpr;
	float wi = wpi;

	int i3;

	float h1r, h1i, h2r, h2i, rt, it;
	for (i = 1; i < 128 / 2; i++) {

		i3 = 128 - i;

		h1r = 0.5 * (RealOut[i] + RealOut[i3]);
		h1i = 0.5 * (ImagOut[i] - ImagOut[i3]);
		h2r = 0.5 * (ImagOut[i] + ImagOut[i3]);
		h2i = -0.5 * (RealOut[i] - RealOut[i3]);

		rt = h1r + wr * h2r - wi * h2i;
		it = h1i + wr * h2i + wi * h2r;

		Out[i] = rt * rt + it * it;

		rt = h1r - wr * h2r + wi * h2i;
		it = -h1i + wr * h2i + wi * h2r;

		Out[i3] = rt * rt + it * it;

		wr = (wtemp = wr) * wpr - wi * wpi + wr;
		wi = wi * wpr + wtemp * wpi + wi;
	}

	rt = (h1r = RealOut[0]) + ImagOut[0];
	it = h1r - ImagOut[0];
	Out[0] = rt * rt + it * it;
	rt = RealOut[128 / 2];
	it = ImagOut[128 / 2];
	Out[128 / 2] = rt * rt + it * it;
}

void FFT(int NumSamples,
		gboolean InverseTransform,
		float *RealIn, float *ImagIn, float *RealOut, float *ImagOut)
{
	int NumBits;                 /* Number of bits needed to store indices */
	int i, j, k, n;
	int BlockSize, BlockEnd;

	double angle_numerator = 2.0 * M_PI;
	double tr, ti;                /* temp real, temp imaginary */
/*
	if (!IsPowerOfTwo(NumSamples)) {
		fprintf(stderr, "%d is not a power of two\n", NumSamples);
		exit(1);
	}
*/
	if (!gFFTBitTable)
		InitFFT();

	if (!InverseTransform)
		angle_numerator = -angle_numerator;

	NumBits = NumberOfBitsNeeded(NumSamples);

	/*
	 **   Do simultaneous data copy and bit-reversal ordering into outputs...
	 */
	for (i = 0; i < NumSamples; i++) {
		j = FastReverseBits(i, NumBits);
		RealOut[j] = RealIn[i];
		ImagOut[j] = (ImagIn == NULL) ? 0.0 : ImagIn[i];
	}

	/*
	 **   Do the FFT itself...
	 */

	BlockEnd = 1;
	for (BlockSize = 2; BlockSize <= NumSamples; BlockSize <<= 1) {

		double delta_angle = angle_numerator / (double) BlockSize;

		double sm2 = sin(-2 * delta_angle);
		double sm1 = sin(-delta_angle);
		double cm2 = cos(-2 * delta_angle);
		double cm1 = cos(-delta_angle);
		double w = 2 * cm1;
		double ar0, ar1, ar2, ai0, ai1, ai2;

		for (i = 0; i < NumSamples; i += BlockSize) {
			ar2 = cm2;
			ar1 = cm1;

			ai2 = sm2;
			ai1 = sm1;

			for (j = i, n = 0; n < BlockEnd; j++, n++) {
				ar0 = w * ar1 - ar2;
				ar2 = ar1;
				ar1 = ar0;

				ai0 = w * ai1 - ai2;
				ai2 = ai1;
				ai1 = ai0;

				k = j + BlockEnd;
				tr = ar0 * RealOut[k] - ai0 * ImagOut[k];
				ti = ar0 * ImagOut[k] + ai0 * RealOut[k];

				RealOut[k] = RealOut[j] - tr;
				ImagOut[k] = ImagOut[j] - ti;

				RealOut[j] += tr;
				ImagOut[j] += ti;
			}
		}
		BlockEnd = BlockSize;
	}

	/*
	 **   Need to normalize if inverse transform...
	 */

	if (InverseTransform) {
		float denom = (float) NumSamples;

		for (i = 0; i < NumSamples; i++) {
			RealOut[i] /= denom;
			ImagOut[i] /= denom;
		}
	}
}

void InitFFT()
{
	gFFTBitTable = malloc(MaxFastBits*sizeof(int));

	int len = 2;
	int b, i;
	for (b=1; b<=MaxFastBits; b++) {
		gFFTBitTable[b-1]=malloc(len*sizeof(int));

		for (i=0; i<len; i++)
			gFFTBitTable[b-1][i] = ReverseBits(i, b);

		len <<= 1;
	}
}

int NumberOfBitsNeeded(int PowerOfTwo)
{
	int i;

/*
	if (PowerOfTwo < 2) {
		fprintf(stderr, "Error: FFT called with size %d\n", PowerOfTwo);
		exit(1);
	}
*/
	for (i = 0;; i++)
		if (PowerOfTwo & (1 << i))
			return i;
}

inline int FastReverseBits(int i, int NumBits)
{
	if (NumBits <= MaxFastBits)
		return gFFTBitTable[NumBits - 1][i];
	else
		return ReverseBits(i, NumBits);
}

int ReverseBits(int index, int NumBits)
{
   int i, rev;

   for (i = rev = 0; i < NumBits; i++) {
      rev = (rev << 1) | (index & 1);
      index >>= 1;
   }

   return rev;
}


void audio2hsv_1(gint audio_level, gint *light_h, gint *light_s, gint *light_v) {
	// Dummy code
	*light_h=-audio_level;
	*light_s=audio_level;
	*light_v=65535;
}

		
void hsv2rgb(gint h, gint s, gint v, gint *r, gint *g, gint *b) {
   /*
    * Purpose:
    * Convert HSV values to RGB values
    * All values are in the range [0..65535]
    */
   float F, M, N, K;
   int   I;
   
   if ( s == 0 ) {
      /* 
       * Achromatic case, set level of grey 
       */
      *r = v;
      *g = v;
      *b = v;
   } else {
      I = (int) h/(65535/6);	/* should be in the range 0..5 */
      F = h - I;		/* fractional part */

      M = v * (1 - s);
      N = v * (1 - s * F);
      K = v * (1 - s * (1 - F));

      if (I == 0) { *r = v; *g = K; *b = M; }
      if (I == 1) { *r = N; *g = v; *b = M; }
      if (I == 2) { *r = M; *g = v; *b = K; }
      if (I == 3) { *r = M; *g = N; *b = v; }
      if (I == 4) { *r = K; *g = M; *b = v; }
      if (I == 5) { *r = v; *g = M; *b = N; }
   }
}