summaryrefslogtreecommitdiff
path: root/tests/test5/compute.c
blob: 3a94efee09d3f947ebd0fdf68d01bdbc79036df8 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
#include "compute.h"

#include "fft.h"
#include <math.h>

#define MAX_SAMPLES 2048

gfloat compute_level(const float *data, size_t nsamples, size_t nchan) {

	double rate=44100; //TODO dynamique
	size_t i; 
	float input[MAX_SAMPLES], output[128];
	float level;

	if (nsamples >= MAX_SAMPLES) {
		printf("WARN : nsamples >= MAX_SAMPLES : %i >= %i\n", nsamples, MAX_SAMPLES);
		nsamples=MAX_SAMPLES;
	}
/* Just return the max peak
	for (i=0;i<nsamples;i+=nchan) {
		val=((float *)data)[i];
		//printf("val==%i\n", val);
		if (val<0) val=-val;
		if (level<val) level=val;
	}
*/
	for (i=0;i<nsamples;i++) {
		input[i]=data[i/**nchan*/];
/*		printf("\r%f ", input[i]);
		fflush(stdout);
*/
	}
//	printf("\n");

	compute_spectrom(input, nsamples, rate, output);
	level=0.f;
	for (i=1;i<128;i++) {
		level+=output[i];
	}
	level/=127.f;
	//printf("%f\n", level);
	return level;
}

// From Audacity
void compute_spectrom(float * data, int width, double rate, float *output) {

	int i;
	float processed[256]={0.0f};
//TODO : remove init here
	float in[256]={0.0f};
	float out[256]={0.0f};

	int start = 0;
	int windows = 0;
	while (start + 256 <= width) {
		for (i=0; i<256; i++)
			in[i] = data[start + i];

		// Hanning
		for (i=0; i<256; i++)
			in[i] *= 0.50 - 0.50 * cos(2 * M_PI * i / (256 - 1));

		PowerSpectrum(in, out);

		// Take real part of result
		for (i=0; i<256/2; i++)
			processed[i] += out[i];

		start += 256/2;
		windows++;
	}
	// Convert to decibels
	// But do it safely; -Inf is nobody's friend
	for (i = 0; i < 256/2; i++){
		float temp=(processed[i] / 256 / windows);
		if (temp > 0.0)
			processed[i] = 10*log10(temp);
		else
			processed[i] = 0;
	}
	for(i=0;i<256/2;i++)
		output[i] = processed[i];
}

/*
 * PowerSpectrum
 *
 * This function computes the same as RealFFT, above, but
 * adds the squares of the real and imaginary part of each
 * coefficient, extracting the power and throwing away the
 * phase.
 *
 * For speed, it does not call RealFFT, but duplicates some
 * of its code.
 */

void PowerSpectrum(float *In, float *Out)
{
	int i;

	float theta = M_PI / 128;

	float tmpReal[128];
	float tmpImag[128];
	float RealOut[128];
	float ImagOut[128];

	for (i = 0; i < 128; i++) {
		tmpReal[i] = In[2 * i];
		tmpImag[i] = In[2 * i + 1]; //FIXME : WTFFFF ?
		tmpImag[i]=0;
	}

	FFT(128, 0, tmpReal, tmpImag, RealOut, ImagOut);

	float wtemp = sin(0.5 * theta);

	float wpr = -2.0 * wtemp * wtemp;
	float wpi = -1.0 * sin(theta);
	float wr = 1.0 + wpr;
	float wi = wpi;

	int i3;

	float h1r, h1i, h2r, h2i, rt, it;
	for (i = 1; i < 128 / 2; i++) {

		i3 = 128 - i;

		h1r = 0.5 * (RealOut[i] + RealOut[i3]);
		h1i = 0.5 * (ImagOut[i] - ImagOut[i3]);
		h2r = 0.5 * (ImagOut[i] + ImagOut[i3]);
		h2i = -0.5 * (RealOut[i] - RealOut[i3]);

		rt = h1r + wr * h2r - wi * h2i;
		it = h1i + wr * h2i + wi * h2r;

		Out[i] = rt * rt + it * it;

		rt = h1r - wr * h2r + wi * h2i;
		it = -h1i + wr * h2i + wi * h2r;

		Out[i3] = rt * rt + it * it;

		wr = (wtemp = wr) * wpr - wi * wpi + wr;
		wi = wi * wpr + wtemp * wpi + wi;
	}

	rt = (h1r = RealOut[0]) + ImagOut[0];
	it = h1r - ImagOut[0];
	Out[0] = rt * rt + it * it;
	rt = RealOut[128 / 2];
	it = ImagOut[128 / 2];
	Out[128 / 2] = rt * rt + it * it;
}

void audio2hsv_1(gint audio_level, gint *light_h, gint *light_s, gint *light_v) {
	// Dummy code
	*light_h=-audio_level;
	*light_s=audio_level;
	*light_v=65535;
}

		
void hsv2rgb(gint h, gint s, gint v, gint *r, gint *g, gint *b) {
   /*
    * Purpose:
    * Convert HSV values to RGB values
    * All values are in the range [0..65535]
    */
   float F, M, N, K;
   int   I;
   
   if ( s == 0 ) {
      /* 
       * Achromatic case, set level of grey 
       */
      *r = v;
      *g = v;
      *b = v;
   } else {
      I = (int) h/(65535/6);	/* should be in the range 0..5 */
      F = h - I;		/* fractional part */

      M = v * (1 - s);
      N = v * (1 - s * F);
      K = v * (1 - s * (1 - F));

      if (I == 0) { *r = v; *g = K; *b = M; }
      if (I == 1) { *r = N; *g = v; *b = M; }
      if (I == 2) { *r = M; *g = v; *b = K; }
      if (I == 3) { *r = M; *g = N; *b = v; }
      if (I == 4) { *r = K; *g = M; *b = v; }
      if (I == 5) { *r = v; *g = M; *b = N; }
   }
}