#include "compute.h"

#include "fft.h"
#include <math.h>

#define MIN_SAMPLES 256
#define MAX_SAMPLES 2048

//#define MAX(a,b) (a>b?a:b)
//#define MIN(a,b) (a<b?a:b)

//static inline float todB_a(const float *x);
void compute_spectrum(float *data, int width, float output[PSHalf]);


float compute_level(const float *data, size_t nsamples, int rate) {

	size_t i; 
	float input[MAX_SAMPLES], pwrspec[PSHalf];
	float value;
	int f, min_f_index, max_f_index;

	if (nsamples >= MAX_SAMPLES) {
		printf("WARN : nsamples >= MAX_SAMPLES : %i >= %i\n", nsamples, MAX_SAMPLES);
		nsamples=MAX_SAMPLES;
	}
	if (nsamples < MIN_SAMPLES) {
		printf("WARN : nsamples < MIN_SAMPLES : %i >= %i\n", nsamples, MIN_SAMPLES);
		// Replicate with symmetry the sound to obtain an input buffer of the minimal len
		for (i=0;i<MIN_SAMPLES;i++) {
			if ( (i/nsamples)%2==1 )
				input[i]=data[i]; // First channel only
			else
				input[i]=data[nsamples-i-1];
		}
		nsamples=MIN_SAMPLES;
	} else {
		for (i=0;i<nsamples;i++) {
			input[i]=data[i]; // First channel only
		}
	}

	compute_spectrum(input, nsamples, pwrspec);

	// Compute the mean power for 200Hz to 2000Hz band
	min_f_index=((float)PSHalf)*200.f/(((float)rate)/2.f);
	max_f_index=((float)PSHalf)*2000.f/(((float)rate)/2.f);

	value=0.f;
	for (f=min_f_index;f<=max_f_index;f++) {
		value+=pwrspec[f];
	}
	// Mean value
	value=value/(max_f_index-min_f_index+1);

	return value;
}
/*
static inline float todB_a(const float *x){
  return (float)((*(int32_t *)x)&0x7fffffff) * 7.17711438e-7f -764.6161886f;
}
*/
// Adapted from Audacity 
void compute_spectrum(float *data, int width, float output[PSHalf]) {

	int i, start, windows;
	float temp;
	float in[PSNumS];
	float out[PSHalf];
	float processed[PSHalf]={0.0f};

	start = 0;
	windows = 0;
	while (start + PSNumS <= width) {
		// Windowing : Hanning
		for (i=0; i<PSNumS; i++)
			in[i] = data[start+i] *(0.50-0.50*cos(2*M_PI*i/(PSNumS-1)));

		// Returns only the real part of the result
		PowerSpectrum(in, out);

		for (i=0; i<PSHalf; i++)
			processed[i] += out[i];

		start += PSHalf;
		windows++;
	}
	// Convert to decibels
	// But do it safely; -Inf is nobody's friend
	for (i = 0; i < PSHalf; i++){
		temp=(processed[i] / PSNumS / windows);
		if (temp > 0.0)
			output[i] = 10*log10(temp);
		else
			output[i] = 0;
	}
}

void audio2hsv_1(int audio_level, int *light_h, int *light_s, int *light_v) {
	// Dummy code
	*light_h=-audio_level;
	*light_s=audio_level;
	*light_v=65535;
}

		
void hsv2rgb(int h, int s, int v, int *r, int *g, int *b) {
   /*
    * Purpose:
    * Convert HSV values to RGB values
    * All values are in the range [0..65535]
    */
   float F, M, N, K;
   int   I;
   
   if ( s == 0 ) {
      /* 
       * Achromatic case, set level of grey 
       */
      *r = v;
      *g = v;
      *b = v;
   } else {
      I = (int) h/(65535/6);	/* should be in the range 0..5 */
      F = h - I;		/* fractional part */

      M = v * (1 - s);
      N = v * (1 - s * F);
      K = v * (1 - s * (1 - F));

      if (I == 0) { *r = v; *g = K; *b = M; }
      if (I == 1) { *r = N; *g = v; *b = M; }
      if (I == 2) { *r = M; *g = v; *b = K; }
      if (I == 3) { *r = M; *g = N; *b = v; }
      if (I == 4) { *r = K; *g = M; *b = v; }
      if (I == 5) { *r = v; *g = M; *b = N; }
   }
}